Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles.
نویسندگان
چکیده
The purpose of this study was to examine the expression of nuclear and mitochondrial genes in cardiac and skeletal muscle (triceps brachii) in response to short-duration microgravity exposure. Six adult male rats were exposed to microgravity for 6 days and were compared with six ground-based control animals. We observed a significant 32% increase in heart malate dehydrogenase (MDH) enzyme activity, which was accompanied by a 62% elevation in heart MDH mRNA levels after microgravity exposure. Despite modest elevations in the mRNAs encoding subunits III, IV, and VIc as well as a 2.2-fold higher subunit IV protein content after exposure to microgravity, heart cytochrome c oxidase (CytOx) enzyme activity remained unchanged. In skeletal muscle, MDH expression was unaffected by microgravity, but CytOx activity was significantly reduced 41% by microgravity, whereas subunit III, IV, and VIc mRNA levels and subunit IV protein levels were unaltered. Thus tissue-specific (i.e., heart vs. skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, the expression of nuclear-encoded proteins such as CytOx subunit IV and expression of MDH are differentially regulated within a tissue. Our data also illustrate that the heart undergoes previously unidentified mitochondrial adaptations in response to short-term microgravity conditions more dramatic than those evident in skeletal muscle. Further studies evaluating the functional consequences of these adaptations in the heart, as well as those designed to measure protein turnover, are warranted in response to microgravity.
منابع مشابه
Effect of Aerobic Exercise with Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles
Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear. Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles. Methods: Pa...
متن کاملContinuous Swimming Training Arises a Remarkable Effect on Some Longevity Biomarkers in Rat Skeletal Muscles
Background. SIRT3 is one of the members of the Sirtuin deacetylase protein family which is linked to the longevity of human being and is used as an important therapeutic and diagnostic marker in illness and aging. Objectives. The aim of this study was studying the effect of continuous swimming training on some biomarkers of longevity in slowtwitch (SOL) and fast-twitch (EDL) muscles of adult m...
متن کاملEffect of pre-treatment with oxytocin on cardiac enzymes in regional ischemiareperfusion injury induced in the rat heart
Introduction: Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) induced cardioprotection and its signaling pathways on lactate dehydrogenase (LDH) and creatine kinase-MB isoenzyme (CK-MB) in the anesthetized rats. Methods: Ei...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 1998